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I. Introduction 
In previous studies, we presented predictions for the tunneling 

matrix element dependence on donor, acceptor, and bridge en­
ergetics and topology for several linkers.1 We also distinguished 
the nature and importance of through-bond vs. through-space 
pathways for some model potentials.2 Here, we simplify and unify 
the results for tunneling through organic linkers. We begin by 
discussing considerable simplifications that arise when charge 
mediation by either the bonding (valence) or the antibonding 
(conduction) states dominates the donor-acceptor interaction. We 
discuss the validity of the periodic, weak coupling, and small 
backscattering approximations. Next, we compare tunneling 
matrix elements for several linkers and show, analytically, how 
topological effects in cyclic bridges can enhance or decrease the 
matrix element. Both constructive- and destructive-interference 
effects are found to be important. An understanding of how these 
effects influence the distance decay of the matrix element for 
different organic donor-acceptor bridges of current experimental 
interest is the main goal of this paper. (Recall that the rate is 
proportional to the square of the matrix element in the nonadi-
abatic limit.3) We also discuss the predictions of Hush4 and 
Schipper5 that electron-transfer matrix elements decay in a 
polynomial rather than in an exponential fashion with distance. 

The goal of this work is to show why different hydrocarbon 
bridges are expected to give different electron-transfer rates even 
for the same donors, acceptors, and transfer distance. A consistent 
method is given to predict the efficiency of different bridges for 
mediating the donor-acceptor interaction. This method is given 
in a simple enough form so that it can be directly applied by 
experimentalists when considering target bridging molecules, and 
it is also of use for understanding electron-transfer rates in existing 
model compounds. It may also be useful for designing new 
molecules with novel applications to microelectronics.6 

II. One-Band Model for Bond-Mediated Electron Tunneling 
In the first part of this section we show how the electron-transfer 

rate dependence on distance for a linear alkane bridge can be 
described with a one orbital per bond model. This description 
permits a clearer understanding of the terms electron and hole 
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transfer. It also identifies the contributions of different "tunneling 
pathways" to the tunneling matrix element. 

Let us represent an alkane chain by a set of sp3 orbitals. 
Orbitals on the same carbon atom have an interaction 7, and 
orbitals in the same bond have an interaction /3. For simplicity 
we neglect the C-H bonds in this section. For realistic parameters, 
\(3\ » \y\. Thus, if the donor is coupled to an n-alkane with TV 
carbon atoms (2N sp3 carbon orbitals participating in the C-C 
bonds), the Hamiltonian is given in (2.1). The zero of the energy 
scale is chosen so that asps = 0. Also, /3 and 7 are defined as 
negative quantities in the usual Hiickel convention, which follows 
from the assumption that the basis functions all have the same 
phase.7 

HD = ADaD
+aD + 0D(aD'ral + a^a0) + 

N N-I 

Zy(Ci2I-Sa2I + a2i
fa2H) + E/3(fl2,

+^2,+i + O21^a21) (2.1) 
1=1 1=1 

This Hamiltonian describes N carbon atoms, each with two sp3 

orbitals participating in the backbone bonds. The hybrid orbitals 
participating in the C-H bonds, considered in section III, are not 
included at this stage for reasons of simplicity. The parameter 
7 couples hybrid orbitals on the same carbon atom, and /3 couples 
hybrid orbitals participating in a bond. Only nearest^neighbor 
interactions are included. Notice that the Hamiltonian, written 
here in operator notation, is just the common one-electron extended 
Hiickel representation of the problem using a basis set of hybrid 
orbitals. 
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This Hamiltonian employs a one-electron model. Discussions 
of the reasons that this approximation works for the electron-
transfer problem have been given by several authors.8'9 Because 
we are working in the weak-coupling limit (donor-bridge and 
bridge-bridge orbital interactions are "small"), many electron 
effects are expected to be unimportant. Assuming that orbitals 
in the bridge can be represented well in the tight-binding limit,2 

the one-electron wave function is a good approximation for the 
donor and acceptor states far from the nuclei. This is because 
the electrons of the bridge are closed-shell "core" electrons.8 

Electron correlation strongly affects the orbital energies, but the 
hopping matrix element between bridge sites is basically a one-
electron matrix element. A similar argument has been given for 
the electron-exchange process in aqueous Fe2+-Fe3+.9 

Real systems have an acceptor bound to the Mh atom of the 
bridge. In a Franck-Condon approach, the electronic energy, 
which determines the tunneling matrix element for the "activated 
complex", is identical for the donor and acceptor. If the coupling 
matrix element between atom N of the bridge and the acceptor 
is, in this extended Hiickel framework, BA, the tunneling matrix 
element is exactly /3A times the amplitude of the donor wave 
function on the terminal bridge atom. Therefore, all of the 
distance dependence of the tunneling matrix element, and hence 
of the electron-transfer rate, is contained in the donor wave 
function calculated at the appropriate energy. A more complete 
discussion of this result is given in ref 1, 2, and 8. The validity 
of the Franck-Condon approximation is discussed in ref 8. 

If the alkane chain were infinite, we could use Bloch conditions 
and write the donor wave function at bonding orbital k as in (2.2). 

$ t
D = (k(a<t>lk + b<t>lk+x) (2.2) 

Here <j>k is the orbital wave function of the fcth sp3 orbital. These 
two orbitals participate in a single C-C bond between two adjacent 
atoms. The total number of hybrid orbitals in the chain is 27V. 
The ek term arises from the translational symmetry. 

We now calculate the donor-localized state of the Hamiltonian 
in (2.1) for /V —• <=. The system of equations to solve is then given 
in (2.3), where E is the energy of the donor state. If the donor 

( ! + 7 , S + 7 / e ) 0 ) = * G ) 
interacts weakly with the chain, then E « AD for the localized 
state. This approximation is reasonable, and its validity is discussed 
later in this section. Equation 2.3 gives eq 2.4. In the case of 

t+\/e = (E2-y2-82)/y8 (2.4) 

an alkane chain, \8\ » \y\. If we had an infinite chain of alkane 
(without the donor), the solution of eq 2.4 would lead to two bands: 
one with energy states between 8 + y and 8 - y, and the other, 
between -(8 - y) and -(B + 7). The first band is composed of 
the bonding states of the chain and is called the valence band, 
and the second one is composed of the antibonding states and is 
called the conduction band. The donor state interacts mainly with 
the band that is energetically closer to it. From eq 2.4, we see 
that any state in the band gap (|.E| < \8\) has a negative value 
for «. Because the gap between the two bands is large (about 10 
eV), one band generally dominates the interaction. In most of 
the systems discussed in the next section, the energy level of the 
transfer electron is near that of the valence band. Now we show 
how to formally neglect the effect of the energetically distant band 
and include only the donor interaction with the closest one. 

Assume that the donor-state energy E is close to that of the 
valence band. Then, E is negative and \E - B\,\y\ « \B\. Because 
the donor state is in the band gap (localized), \E - B\ > \y\. By 
use of the approximations above, eq 2.4 can be rewritten as eq 
2.5. Equation 2.5 is exactly the result we would get from a one 
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orbital per site chain model with the Hamiltonian given in eq 2.6. 
N 

HD = A D V ^ D + 0D(«D+«I + a Ja0) + E/ta,-1^ + 
!=1 

£y/2{a;al+1 +O1+Sa1) (2.6) 
(=1 

This Hamiltonian represents a chain of orbitals with self-energy 
8 and nearest-neighbor interaction 7/2. Now the "orbitals" 
represent the C-C bonding orbitals rather than the carbon atomic 
(hybrid) orbitals. This is equivalent to saying that the donor 
interacts with a chain of bonding orbitals of self-energy 8, which 
form a band of width 27. This approximation neglects the donor 
interaction with an entire band of states, not individual states 
within a band. In the Appendix we give a comparison of the <r 
band calculation with the complete calculation for «-alkane. 

In order to validate the above discussion, we must carefully 
address two points. The first is that the bridges we are considering 
are finite, so the infinite chain limit is not exact. The second point 
is that we assume that the donor weakly interacts with the chain. 
As in eq 2.2, but for finite N, let us write the (exact) donor wave 
function for eq 2.6 as eq 2.7, where JV is the normalization factor. 

* D = 77(0D + £(«<* + ^ + w ) 4 > , ! (2.7) 

Here 0, is the^'th bond orbital. Also, for reasons of simplification, 
we fix the zero of the energy scale in the center of the band and 
define 7' = 7/2. This form for the wave function is completely 
general as long as the finite bridge is periodic except at its edges. 
Multiplying HD^D = E0V0 by 4>f and integrating, we obtain eq 
2.8a-d. From eq 2.8c, we obtain the same E-t relation (2.9) that 

<D|: 8D(ae + beN) = (E - AD) (2.8a) 

<1|: BD + (ae2 + b^-^y' = E(ae + b(N) (2.8b) 

</|: (ae''"1 + bcN-'+2)y' + (a«,+1 + bt^ft' = 

E(ae> + bey'i+1) for i = 2, N - 1 (2.8c) 

(M: (aeN-1 + bt2)y' = E(atN + bt) (2.8d) 

t+l/t = E/y' (2.9) 
we found for the infinite bridge. Combining eq 2.8d and 2.9, we 
obtain eq 2.10. From eq 2.10, we see that the coefficient mul-

a/b = -\/tN+x (2.10) 

tiplying ty in ̂ 0 is given in (2.11). From eq 2.11 we obtain two 

Cj = ae> + beN-J+1 = ae>(l - e2N+2/z2') (2.11) 

conclusions. First, the infinite chain approximation becomes worse 
near the ends of the chain. Second, the terminal orbital coefficient, 
CN, is always equal to the infinite chain result, atN, multiplied 
by 1 - e2, independent of N (a is chain length independent in the 
weak-coupling limit, discussed below). Thus, if we link an acceptor 
to the TVth bridge unit, the amplitude of the matrix element is 
proportional to (1 - t2)eN and therefore shows a distance depen­
dence proportional to tN. Also, if e2 « 1 (i.e., 1 - (

2N+2/t2J « 1 
for all j), we can neglect backscattering between bonds, and the 
infinite chain result becomes exact for a finite chain. It is im­
portant to stress that the i2 « 1 condition is not necessary to 
guarantee a chain length dependence of eN. 

Assuming that tN « 1, we obtain from eq 2.8b the results in 
(2.12). Substituting eq 2.12 into eq 2.8a yields (2.13). Therefore, 

at = 8D/(E - 67') - h/E (2.12) 

we can assume E =» AD as long as BD
2 « AD

2. (Recall that AD 

is the energy of the donor orbital relative to the center of the band.) 

E = AD + BD
2/E (2.13) 
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Figure 1. Repeating unit orbitals for valence band of n-alkane (|e|). 

The normalization factor of eq 2.7 is given in eq 2.14. In the 
weak-coupling limit, if/3D « E, then at « 1, so JV2 = 1. In this 
limit the normalization constant is chain length independent. 

JV2 = 1 + E |C,|2 (2.14) 

From eq 2.11, we see that if e2 « 1, we can neglect back-
scattering and the wave function can be described as decaying 
by the factor y'/E per bond (orbital). Because y' is negative and 
E is positive for hole tunneling, the ratio y'/E is always negative, 
and the sign of this ratio is important for interference effects 
between tunneling pathways, discussed in Section III. For electron 
rather than hole tunneling, the signs of both parameters are 
reversed and the ratio is still negative. More generally, if we have 
a chain with varying orbitals where the periodic condition is not 
necessarily applicable, we can define decay per bond as in (2.15), 

€(bondO = 7M- i / (£-<x,) (2-15) 

where 7 ,•_,_] is the exchange interaction between orbitals (bonds) 
i and ;' - 1, a, is the bond orbital energy, and E is the energy of 
the tunneling electron. The result in eq 2.15 has been thoroughly 
discussed for electron tunneling through a saturated bridge.10 Note 
that because all 7's are of the same order of magnitude, after the 
one orbital per site approximation was made, eq 2.15 could have 
been obtained from the first term in the perturbation series for 
the wave function. 

For nonlinear (cyclic) bridges, the results obtained by neglecting 
backscattering agree with the exact result for the leading term 
in powers of y/E. However, in such systems other corrections, 
besides backscattering, appear. They are basically constructive 
interference of pathways of the same length or destructive in­
terference of pathways whose lengths differ by one bond. This 
is shown in Section III and in the Appendix. 

III. Topological Effects on Valence Band Tunneling through 
Hydrocarbon Linkers 

For a qualitative treatment of bridge-mediated electron tun­
neling through hydrocarbons, the basis set of bonding orbitals (hole 
tunneling) or antibonding orbitals (electron tunneling) is a rea­
sonable approximation. To include all of the states (bonding and 
antibonding) in the calculation is entirely possible. However, it 
would not permit a transparent comparison of the results (espe­
cially sources of interference) for different bridging groups—the 
main goal of this section. As discussed in Section II, this ap­
proximation is appropriate for saturated hydrocarbons because 
the bonding-antibonding energy gap (2/3 ~ 17 eV) is much larger 
than the energetic distance between the tunneling electron and 
the center of the relevant band (<5 eV). In this section we include 
the CH bonds in our Hamiltonians because their influence on the 
matrix elements is comparable to many topological effects (e.g., 
those arising from having cyclic rather than linear bridges) as 
shown later in this section. 

We begin this section by listing the exact E-i relations for some 
real and imagined hydrocarbon chains. We then show that the 
leading terms in the relation can be identified with the tunneling 
pathways in the bridge. The negative sign of y/E leads to in­
terference between connected pathways differing in length by one 
bond. For this reason, edge-fused hydrocarbon states of symmetry 
that minimize side routes are particularly important for charge 
mediation. A comparison of matrix element decay with distance 
is made for a chain composed of cyclic hydrocarbons fused on an 
edge vs. those fused at a single atom. 

For the following systems we define the decay per unit cell or 
bond as e or t'. The value of 7 used in this section is half of the 
valence bandwidth discussed in Section II. When discussing the 
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Figure 2. Decay per repeating unit (per CC bond) in «-alkane. The 
energies shown are tunneling energies above the band. The zero of the 
energy scale is the CC a bond energy. 

parity of the bridge states, one should recall that the states con­
tribute to the tunneling matrix element only if the donor and 
acceptor are of the proper symmetry to mix with them (i.e., /3D 

and ^A ^ 0). 
A. Linear Alkane."5 The simplest molecular model for extended 

H-alkane is composed of one CC bond and two CH bonds per "unit 
cell" (see Figure 1). In this case, eq 3. Ia holds. This was obtained 

1 E\ 1 + 4y2/E(a + y - E) 1 

by expanding the determinate that relates E to e (eq 3.1b). 

^(WV""* It7
+-2I)=O 0.1b) 

Figure 2 shows e vs. E in the gap (above the band) for this linker 
(7 = -1.1 eV and a, the CH bond energy relative to the CC bond 
energy, is -0.5 eV). Solving eq 3.1b for e + \/i and expanding 
the quotient for small 7, we obtain eq 3.Ic. Since -2y/(E - a) 

\ E\ 27 I 
£ + - = - 1 - p + ••• (3.1c) 

€ 7 I E-OL J 
is positive, |e| is decreased due to the CH bonds (recall that without 
any CH bonds e + \/e = E/y). This correction can be attributed 
to amplitude that has made a single excursion into the two CH 
bonds interfering with amplitude, which has propagated directly 
along the CC backbone. Higher order terms in the expansion can 
be connected with more convoluted tunneling pathways. This 
destructive interference is a general effect, in hydrocarbons, of 
bonds adjacent to the tunneling pathway. 

Far from the band (|i?| large), the destructive interference is 
unimportant. Recall that we cannot use these models for tunneling 
energies so far from the valence band that mediation by other 
bands becomes important. The presence of CH or other bonds 
with energy lower than that of CC bonds decreases hole tunneling, 
i.e. decrease \t\ (wave function decay becomes more rapid). 

To illustrate further complications that arise from geometric 
effects of the linker, we consider chains with four-membered rings. 
These chains have pedagogical value as well as relevance to bridges 
described in ref 10 and 12. We then consider six-membered rings 
of current experimental relevance, namely fused norbornanes and 
fused cyclohexanes. 
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M. Chem. Phys. Lett. 1985, 117, 8. 
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Figure 3. (a) Same as Figure 1 for the even states of edge-fused cyclo­
butane. (b) Same as (a) for the odd states. 

3 3.5 
E IeV) 

Figure 4. Same as Figure 2 for edge-fused cyclobutane. The solid 
(dashed) line shows the decay for the odd (even) states. 

B. Poly (edge-fused cyclobutane). For the even states (Figure 
3a) we find eq 3.2a and for small y we find eq 3.2b. Interference 

£ 7 I 
e + - = -

(a-E)(\ -2y/E) + Ay1ZE 

E - y 

e + i = *|l 
i y 

1J-
E ] 

] (3.2a) 

(3.2b) 

arises from the CC bond connecting the two parallel a pathways 
as well as from the CH bond. Equations for the odd states (Figure 
3b) of the valence band (eq 3.3a) and for small y (eq 3.3b) are 
found as well. In this case, interference arises only from the CH 

1 E 
t + - = -

e y 

e + 

[ a - E + Iy1IE "J 
a - E - y I 

e 71 E - a J 

(3.3a) 

(3.3b) 

bonds because there is no interaction between the parallel <J 
bonding pathways. Figure 4 shows the E-t relation for the even 
and odd states of this unit cell. 

C. Poly(spirocyclobutane).lbl° To illustrate the difference 
between edge- and corner-fused cyclic alkanes, we now consider 
spirocyclobutanes. There are two CC bonds per unit cell and two 

H H 

\t 

C 

#1 
H H 

Figure 5. Same as Figure 1 for the even states of spirocyclobutane. 

Figure 6. Same as Figure 2 for spirocyclobutane (even states). In all 
the following molecules there are two CC bonds per repeating unit. The 
decay per bond is shown («' = |e|1/2). 

convergent pathways for tunneling. One finds for the even states 
(Figure 5) eq 3.4a holds. This equation was used to plot the E-z 

, 1 (7 
e 

Ef - 972(7 -E) + a(y - E)1 + 4 7
3 - 5«72 

272(7 -E) + 2y2a - Ayi 

(3.4a) 

relation in Figure 6. Expanding this for small y, we obtain eq 
3.4b. The convergent pathways give a prefactor of 2 in the decay 

e + -mi 27 

E 

2 7 
(3.4b) 

per unit cell, which enhances tunneling. Destructive interference 
arises from the CH bonds and the interactions between bonds to 
the quaternary carbon atoms. Far from the band, the factor of 
2 dominates and wave function propagation per CC bond is 21/2 

times as efficient as in n-alkane. However, near the band edge, 
the extra destructive interference at the quarternary carbon is 
significant and the full 21/2 enhancement relative to H-alkane is 
not realized. 

From the equations for these and other unit cells we see that 
the valence band is split into a few closely lying bands. The 
one-band approximation discussed in the previous section cannot 
be applied further to these bands because the gaps are smaller 
than the energetic distance of the transfer state to the bands. The 
sole inclusion of CC a bonds, however, remains valid and is 
discussed further in the Appendix. The bridge states, odd with 
respect to either mirror plane of spirocyclobutane, give zero 
contribution to electron tunneling due to the molecular symmetry.16 

D. Poly (edge-fused cyclohexane). A model for the steroidal 
and cyclohexyl donor-acceptor linkers of Closs and co-workers11 

is a chain of edge-fused cyclohexane rings (Figure 7). As in the 
edge-fused cyclobutanes, the leading term in the t + 1/e equation 
is Ely raised to the power of the number of bonds in the unit cell 
along the most direct tunneling route. The next higher order terms 
arise from the destructive interference due to the CH bonds and 
the one-bond connection between the two parallel direct tunneling 
routes. The 27/is factor arises from destructive interference 
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Figure 7. Same as Figure 3 for edge-fused cyclohexane. 
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Figure 8. Same as Figure 4 for edge-fused cyclohexane. 

between amplitude propagating along the edge of the molecule 
with that propagating between the two edge pathways (for even 
bridge states). For the even states, we solved (Figure 8) eq 3.5a, 
and for small y, found eq 3.5b. For the odd states, the decay 

det i 

a -
27 
7 
0 
7« 

E 7 
-E 
7 
U 
ye 

y 
27 
-E 
y 
y + yt 

0 
0 
2y 
y + a • 
27 

-E 

y/e 

2yl< 
7/6 + 
7 
- £ 

7 

e + i-[f]'(-^-T--) 

(3.5a) 

(3.5b) 

per unit cell is given (Figure 8) by eq 3.6a. For these odd states, 

det 
' -E y/e + 7 27 y/e \ 
7« + y E 2y 7 
y y a + y — E 0 
ye 7 0 a - Ei 

(3.6a) 

the bridge functions as two independent n-alkane chains with one 
less CH bond every other carbon atom. For small 7, we obtain 
eq 3.6b. 

« L 7 J V E~ a / (3.6b) 

E. Poly(norbornane).12 In this case (shown in Figure 9), a 
model for the linkers of Verhoeven and co-workers, the propagation 
is similar to that through fused cyclohexane. The differences arise 
(to first order) from the presence of two CC bonds in the place 

H H 

— c * -
C 

H ^ C ' 

H 

T 

H 

Figure 9. Same as Figure 3 for norbornane. 

1 

Figure 10. Same as Figure 4 for norbornane. 

of two CH bonds in the unit cell. 
For the even states (Figure 10), eq 3.7a and 3.7b are obtained. 

For the odd states (Figure 10), eq 3.8a and 3.8b are obtained. 
As in the case of fused cyclohexanes, the odd states assist electron 
transport more than the even ones due to the absence of destructive 
interference from the bond common to adjacent rings. The 
presence of the CC bond in place of the CH bond compared to 
cyclohexane decreases the electron propagation. 

det 

a -
7 
0 
0 
yt 

E 

e 

7 
-E 
7 
7 
7 + 7« 

M 

0 
7 
a 

7 
7 

fl 

-E 

V 

0 
7 
7 
-y-E 
7 

27 

E - a 

y/t 

7 + 7 / 
7 
7 
-E 

-I + E 

0 (3.8a) 

(3.8b) 
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We now discuss the simple interpretation of the above results. 
Let us assume that the shortest pathway in the unit cell is com­
posed of x CC bonds. If we neglect pathways with more than 
x bonds, the decay can be written as in eq 3.9a, where P is the 

a.B 

« + 7 = ^iy/EY (3.9a) 

number of convergent pathways in the unit cell. This factor P 
enhances the rate due to constructive interference of multiple 
pathways x bond in length. The next correction we can include 
in eq 3.9a arises from the destructive interference of pathways 
of length x with those of length x + 1. To this order of correction, 
the decay can be written as in eq 3.9b, where the sum on i extends 

« + 7 = ^(y/EYli - Zy/(E - a,)] (3.9b) 

over the extra bond of all x + 1 bond pathway. at is zero if this 
extra bond is CC and -0.5 eV if it is CH. Equation 3.9b yields 
exactly the first-order expansions presented in this section up to 
this point. 

It is important to recall that these corrections arise from the 
several possible tunneling pathways, not from backscattering. As 
discussed in Section II, the backscattering corrections for periodic 
systems are the corrections to the approximation e + 1/e = 1/e. 

The leading terms in the expansions for small y may not be 
adequate for calculating e in some experimentally important cases 
because y/E need not be small compared to one, and prefactors 
of these and higher order terms may need to be included. How­
ever, they give a qualitative indication of which bridges are more 
favorable for mediating electron transfer at a given tunneling 
energy. The discussion to first order about constructive and 
destructive interference can be generalized. Pathways that differ 
by an odd number of bonds interfere destructively, but those that 
differ by an even number of bonds interfere constructively. 
Convergent tunneling routes, such as those in spirocyclobutane 
(rings fused at a single atom), give e + 1/e a prefactor equal to 
the number of these routes. Parallel pathways joined occasionally, 
such as in edge-fused cyclohexane or cyclobutane, introduce de­
structive interference due to paths one bond longer than the "main" 
path. For a band tunneling, the odd states in edge-fused molecules 
assist tunneling more than the even states. For electron tunneling 
through the antibonding bands, the reverse is true (i.e., even states 
assist tunneling more than odd states in that case). 

IV. Discussion 
We have seen that different destructive and/or constructive 

interference for different bridges leads to different matrix elements. 
Because of destructive interference, odd (even) states for edge-
fused single-ring hydrocarbons have a slower (faster) decay than 
n-alkane. Norbornane, due to the additional CC bridging bonds, 
is the least favorable bridge considered within a few electronvolts 
of the valence band. Donor and acceptor states may mix with 
both even and odd bridge states. At large transfer distances, the 
wave function amplitude will be dominated by the odd symmetry 
bridge states. Constructive interference is important in spiro cyclic 
alkanes, and it will always slow the matrix element decay with 
distance. 

Figure 11 shows the energy dependence of the average wave 
function decay per bond for the linkers discussed in the previous 
section (odd symmetry states). Normal donors and acceptors lie 
a few electronvolts from the band edge. At these energies the 
relative mediation efficiencies can be understood from the in­
terference effects described in the previous section. The con­
structive interference in spirocyclobutane makes it the most ef­
fective hydrocarbon charge mediator that we have considered. 

Experimental results show that the model systems are in the 
range of 1-3 eV from the band edge. The electronic tunneling 
energy is determined by the redox potentials of the donor and 
acceptor.13* Therefore, in order to determine the tunneling energy 
more precisely, we need the full study of the distance dependence 
at several redox potentials. The free energy for the transfer 
reaction at a fixed distance, AG, depends on the redox potential 

3.5 
E [eV) 

Figure 11. Decay per bond for «-alkane (dashed line), for even states of 
spirocyclobutane, and for odd states of all other linkers. The solid curves, 
from top to bottom, correspond to spirocyclobutane, edge-fused cyclo­
butane, edge-fused cyclohexane, and edge-fused norbornane. 

difference between donor and acceptor plus other electrostatic 
corrections. Because of these electrostatic corrections, AG for 
the transfer reactions may be distance dependent. To first order, 
this adds a constant correction term to AG for each distance. To 
determine this electrostatic term, a AG analysis at several distances 
is required. Such a series of experiments would allow a separation 
of the matrix element distance dependence from the Franck-
Condon terms. (Assuming that we have donors and acceptors 
with similar reorganization energies, the Franck-Condon factor 
is only a function of AG.) Once the AG dependence on distance 
is understood, experiments that fix AG but move both the donor 
and acceptor energies (moved up or down in the absolute sense) 
would be particularly useful. Such experiments would determine 
the electronic tunneling energy relative to the band. From these 
experiments, it will be possible to obtain € as a function of elec­
tronic energy and AG. This will permit connection of the redox 
energy scale with the energetic distance to the band. For systems 
where the donor and acceptor are both initially neutral, the im­
portance of the AG study is even greater. Here AG is especially 
transfer distance dependent due to the charge-pair interaction in 
the final state (i.e., AG is smaller for longer transfer distances). 
This problem appears in the norbornyl model systems (actually, 
these systems are composed of both edge-fused norbornyl and 
cyclobutyl groups) of Verhoeven and co-workers.12 For the re­
cently reported systems of Closs and co-workers11 (biphenyl radical 
anion donor, fused cyclohexyl bridges, and naphthylene acceptor), 
we expect the tunneling energy to be about 2.5 eV on our energy 
scale. This result is preliminary, and a real quantitative prediction 
should include all of the bridge orbitals and will require more 
experiments. 

If a full experimental study as prescribed above were performed, 
it would permit us to quantify precisely the redox energy scale. 
Comparison of the results for spirocyclobutane, fused norbornanes, 
and fused cyclohexanes for fixed donors and acceptors would allow 
a check of the effectiveness of this calculation. Also, the AG-
distance study would permit a test of our early prediction that 
hole tunneling (valence band) rather than electron tunneling 
(conduction band) dominates the charge mediation process in most 
hydrocarbons. 

Other complex bridges of biological relevance can be studied 
with similar techniques. They do not necessarily need to be 
composed of hydrocarbon for this method to be useful. Such an 
example has been given for electron transfer through a protein 
backbone.lc Indeed, these methods can be extended and applied 
to aperiodic systems if backscattering can be neglected.10 

If the donor is weakly coupled to the bridge, the tunneling 
matrix element decay is strictly exponential in the number of 
bridge groups independent of the size of e. This finding runs 
counter to clains of Hush4 and Schipper,5 that matrix element 
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decays such as 1 /Rm with m =* 3 are anticipated. Although the 
origin of the Hush result is unclear, the \/R? prediction of 
Schipper arises from assumption of a finite bridge and a shallowly 
bound donor state. The wave function amplitude on unmixed 
bridge molecular orbital j at the Mh (terminal) bridge site in a 
one orbital per bridge unit representation is13 given by (4.1). 

[2/(JV + I)]1^2 sin (jN*/(N + I)) (4.1) 

Considering electron (rather than hole) transfer through this band, 
the energetically nearest state is the j = 1 state, and as a function 
of JV, the amplitude on the Mh site is given in eq 4.2. As the 

C.jv « 1 / (JV+ I)3 as J V - co (4.2) 

chain length increases, the density of states near the band edge 
changes and one expects many bridge states to mix with the donor 
and acceptor. The I/R3 result would have meaning only if the 
bridge states were so well separated that only the interaction of 
the nearest bridge state with the donor and acceptor dominated 
the interaction. For the parameters considered here, this is 
certainly not the case, even for short chains. Formally, the as­
sumption of interaction with a single state is invalid for any set 
of parameters as JV —• °°, and we know that the exact result in 
this limit14 for the amplitude of the donor localized wave function 
at the Mh bridge site is given by eq 4.3a and 4.3b. Hence, in 

CN - e^1 (4.3a) 

e + l/e = E/l3 (4.3b) 

the long-chain limit the analytical form for the localized wave 
function (and hence the tunneling matrix element) decay is a pure 
exponential. This is the case even if backscattering cannot be 
ignored (e2 not much smaller than 1), in which case we solve the 
E-t quadratic equation exactly. That the decay must be expo­
nential in the long-chain limit is known from Bloch's theorem. 
It is of interest that neglect of an entire band with energy far from 
the donor, acceptor, and "relevant" band does not introduce 
functional errors to the modeling. Indeed, if the interaction 
parameters are judiciously chosen and the band gaps are large 
enough, quite satisfactory results can be obtained from one orbital 
per bond models. 

Finally, we emphasize the fundamental energy and orbital 
symmetry dependence of the tunneling matrix element. Its value 
depends on the tunneling energy and so, for a given linker, depends 
on the donor and acceptor energetics and vibronic coupling. 
Individual calculations of the tunneling splitting cannot be used 
to predict the distance dependence of the tunneling matrix element 
for different donors and acceptors on the same bridge. Sources 
of both constructive and destructive interference in saturated 
tunneling bridges can be readily identified. Generally speaking, 
pathways of equal length converging at a single atom enhance 
the matrix element more than if these pathways converge at a 
bond. 

Appendix 
This Appendix shows the validity of the a band approximation 

and presents preliminary results for tunneling through unsaturated 
linkers. First, we show the validity of separating the saturated 
linker tunneling problem into independent bonding and anti-
bonding mediated transport problems. That is, we show that the 
use of just the bonding CC and CH orbitals reproduces the band 
structure of the bonding states obtained from the more "complete" 
calculation, which uses a full set of atomic orbitals and finds both 
the bonding and antibonding bands. Second, we discuss tunneling 
in unsaturated periodic linkers. 
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Figure 12. Band structure determined for «-alkane using only bonding 
orbitals (dashed line) and band structure determined for «-alkanela in­
cluding both bonding and antibonding states (solid line). The structure 
of the bonding bands determined with the simple model (solid line) 
reasonably reproduces that determined from the full model. Recall that 
for -2 < t + 1/e < 2 the states are delocalized over the bridge. The a 
band energies were shifted by 8.5 eV for direct comparison with the full 
model. 

Figure 13. Geometry and interactions in the para-poly(phenyl) chains. 
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Figure 14. t + \/(-E/@ relation for para-poly(phenyl) when v = cos 50°. 
u is the ratio of the inter-ring (7) to intra-ring exchange (/?) interactions. 

For «-alkane, the full (bonding and antibonding) band structure 
is calculated from eq A.l. /JCH is the carbon sp3 orbital exchange 

I-E 7 + /3A 27 0 \ 
, , / 7 + /3« -E 27 0 \ 

d e t 7 7 y-E / 3 C H = ° (A-D 
\ 0 0 0CH « H - Ej 

interact ion with hydrogen, and aH is the diagonal energy of hy­
drogen relative to carbon sp3 . Figure 12 plots this equation for l a 

Pen = -9-14 eV, /3 C C = -8 .5 eV, and aH = 0.35 eV. l c Also shown 
is a plot of eq 3.1a (offset by 8.5 eV) . 

Para-poly(phenyl ) (F igure 13) is a linker of increasing inter­
est.15 '16 It is difficult to obtain quant i ta t ive predict ions for un­
saturated linkers because, in contrast to the saturated linker 
problem, a consistent set of experiments does not exist on which 
we can "normalize" t for a given tunneling energy. Also, dy­
namical effects due to phenyl ring rotation may be significant in 
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systems without locked geometries. For para-poly(phenyl) chains 
we find eq A.2 for the geometry of rings in Figure 14. The 
interaction between p orbitals in the ring is /3, and the interaction 
between p orbitals on atoms connecting the rings is y. The ratio 
of these quantities is v = y/0. 

1 (£//3)4 - (£//3)2(5 + v1) + (4 + P2) 
e + - = (A.2) 

Because the HOMO-LUMO gap is a few electronvolts in these 
systems and v is on the order of the cosine of the angle between 
the rings, the small backscattering approximation is most likely 
not generally appropriate. Taking v = cos 50°, the equilibrium 
geometry of biphenyl, we find the E-t relation shown in Figure 
14. The maximum decay of the rate with distance occurs for the 
tunneling energy at the center of the gap {E = O) where 

The radical cations of oxirane and aziridine clearly display the 
extraordinary reactivity that is commonly associated with strained 
three-membered rings. Thus, it has been shown by ESR studies1-4 

that the respective 2B1 and 2A' ground states of these species 
resulting from heteroatom lone-pair ionizations are unstable even 
at 77 K and undergo C - C ring opening to give either delocal-
ized1'2,4 or localized3 carbon-centered radicals. A similar conclusion 
regarding the ease of ring opening in the oxirane cation was 
reached earlier by means of detailed gas-phase studies,5"7 and 
additional evidence for this rearrangement comes from the in­
terpretation of electronic absorption spectra associated with the 
delocalized forms of the ring-opened oxirane and tetramethyl-
oxirane cations.8,9 Moreover, high-level theoretical calculations 
predict that the delocalized ring-opened forms of the oxirane10 

and aziridine11 radical cations are more stable than their ring-

1 Present address: Hypertension Research Program, School of Medicine, 
The University of Alabama at Birmingham, University Station, Birmingham, 
Alabama 35294. 

t(E = O) = v/1 (A.3) 

For a 50° angle, therefore, the rate is expected to change by no 
more than a factor of 10 per ring. Because of the relatively small 
band gap, t (and hence the distance decay of the rate) may be 
considerably different for (photoinduced) forward transfer com­
pared to reverse (thermally activated) electron transfer in these 
systems. 
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closed forms by 19.6 and 26.5 kcal mol-1, respectively, and that 
the barrier to the ring opening of the oxirane cation is likely to 
be less than 3.7 kcal mol-1.12 
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ESR Studies of the Thietane and Thiirane Radical Cations in 
Freon Matrices. Evidence for Ethylene Molecule Extrusion 
from the a* Thiirane Dimer Radical Cation [C2H4S-SC2H4-+] 
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Abstract: ESR spectroscopy has been used to study the structures and reactions of the radical cations produced from the three-
and four-membered sulfur-containing ring compounds, thiirane and thietane, the radical cations being generated by y irradiation 
of dilute solutions of the parent compounds in Freon matrices at 77 K. With use of CFCl3 as the matrix, the monomer radical 
cations have been identified and characterized as having 2B1 ring-closed structures with the unpaired electron localized on 
the sulfur atom. The hyperfine coupling to the four equivalent /3-hydrogens in the thietane cation (31.1 G) is normal, but 
the corresponding value for the thiirane cation (16.1 G) is lower by almost a factor of 2, suggesting that hyperconjugation 
to methylene groups is much reduced in three-membered rings. In the more mobile CFCl2CF2Cl and CF3CCl3 matrices, dimer 
radical cations of thiirane and thietane are produced by the combination of a monomer radical cation with a neutral molecule 
at low temperatures (<100 K). ESR studies show that these dimer species are centrosymmetric, the binding between the 
molecules resulting from the formation of a 3-electron 0-2O-*1 S-S bond. Both of the dimer cations are unstable above 105 
K in the CFCl2CF2Cl matrix, the thietane dimer radical cation decomposing to give the 2-thietanyl radical as a result of hydrogen 
atom or proton transfer, whereas the thiirane dimer radical cation undergoes a novel reaction involving the extrusion of an 
ethylene molecule. Evidence for ethylene formation in the latter reaction comes indirectly from the ESR observation of secondary 
radicals with the structure RCH2CH2 on annealing 7-irradiated solutions of thiirane in CFCl2CF2Cl. Similar radicals are 
also generated in 7-irradiated thiirane solutions in CF3CCl3 at 145-150 K, the ESR spectrum being indistinguishable from 
that of identically treated ethylene solutions. The ethylene extrusion is depicted as a concerted reaction in which the driving 
force is supplied by the transfer of the unpaired electron from the a* (S-S) orbital of the dimer cation to a vacant p orbital 
on the terminal sulfur atom of the remaining C2H4S2

+ moiety. 
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